
ACID, CAP, No NewSQL

A 30k overview of distributed databases
Vlad Petric

Single-system databases

Most are relational databases

A well-understood problem

● Standardized & formalized in the 90s
● Great implementations in the 2000s, including Free

Software (MySQL, Postgres, etc.)
● Work really well, up to some limits

ACID + SQL

ACID

A - atomicity

C - consistency

I - isolation

D - durability

SQL

● Decent query language, based on relational algebra

● Allows non-programmers to write complex queries
○ Filtering
○ Joins
○ Aggregates

● Reasonably well-behaved - e.g., guaranteed polynomial
time

Limitations of ACID SQL databases

Hard to scale beyond several systems

● Neither ACID, nor SQL scale well

However, single computer systems scaled well between 1990
and present

● Faster processors (cores), more cores
● Faster memory, higher capacity memory
● Faster storage, higher capacity storage (spinning drives,

then solid state)

Then came Big Data ...

We need a database to store an entire web
crawl …

We need a database to for all our users’
(>100M) clicks …

Ad-hoc scaling of single-system databases

First solution - ad-hoc scaling

● Partition large tables based on keys

● Distribute on multiple servers

● All customers starting with “A” go to server 1, “B” -> 2,

○ In practice: use a good hash function

Ad-hoc scaling

One node - probability of going down of 1 in 1000 (.1%)

System of a 100 nodes - what is the probability of at least
one node being down?

Even if nothing is down (yeah, right):

● ACID on a node doesn’t mean ACID on whole system
● Querying is much more difficult
● Network can still fail

Remainder of talk

Introduction

Distributed databases

● Definition
● Wish list
● Basic Distributed System
● CAP theorem

Real distributed database systems

Conclusions

System: something with a clearly defined boundary

Distributed systems:

● Collection of computers
● Communicate and coordinate via network messages

Distributed database system:

● Distributed system that is a database (write/read/query)
● Same data may be accessed from multiple nodes

Distributed databases

What would we like from a distributed database?

Everything from single-system database

● ACID, SQL

Scalability

● Quantity of data
● Read/Write/Complex query bandwidth should scale with the

number of systems

Fault Tolerance

● System should hide node failures, network failures

Inventory system: Main Database + Cache

Distributed database; e.g. A - inventory of book “1984”

Can read from either Main DB or Cache

Can only write to main DB

Basic distributed database: inventory system

Main Database:
Inventory levels:
A: 1

Cache:
Inventory levels:
A: 1

Good situation:

● Client 1 writes A:0
● Writer changes A:0, and propagates value to the RA
● Client 2 reads A:0

Basic distributed database: inventory system (2)

Client 1 DB
A: 0

Cache
A: 0

Set value A to 0

Client 2
Reads A

Inconsistent value:

● Client 1 writes A:0
● Client 2 immediately reads A: 1

Basic distributed database: inventory system (3)

Client 1 DB
A: 0

Cache
A: 1

Set value A to 0

Client 2
Reads A

Getting consistency:

● Don’t finish the write until the cache also has the most
up to date value

Basic distributed database: inventory system (4)

Client 1 DB
A: 0

Cache
A: 0

Set value A to 0

Client 2
Reads A

But what if the connection between DB & Cache is severed?

Basic distributed database: inventory system (5)

Client 1 DB
A:

Cache
A:

Set value A to 0

Client 2
Reads A

But what if the connection between DB & cache is severed?

● We could block the write, and eventually fail it (timeout)

Basic distributed database: inventory system (6)

Client 1 DB
A:

Cache
A:

Set value A to 0

Client 2
Reads A

But what if the connection between DB & cache is severed?

● Not propagate the value - inconsistent!

Basic distributed database: inventory system (7)

Client 1 DB
A: 0

Cache
A: 1

Set value A to 0

Client 2
Reads A

Meet the CAP theorem

CAP (Eric Brewer):

● Consistency

● Availability

● Partition Tolerance

Meet the CAP theorem

CAP:

● Consistency: reads receive the most recent value
○ Once you write something, everyone reads it

● CAP Consistency vs ACID C/I/D (Definitions matter!)

Meet the CAP theorem

CAP:

● Availability: every request receives a non-error response
○ Writes are always accepted
○ Reads see a value (doesn’t necessarily have to be the latest)

Meet the CAP theorem

CAP:

● Partition tolerance - system tolerates an arbitrary
number of nodes disconnected from the rest of the system
(nodes can’t talk to each other)

CAP Theorem - at most 2 out of 3

Consistent and Available => not Partition tolerant

Consistent and Partition tolerant => not Available

Available and Partition tolerant => not Consistent

CAP Theorem - in practice

In a distributed system
● Network issues

○ Misconfigurations
○ Power, cooling issues

● JVM stop-the-world garbage collection

P happens!

When P happens - Availability or Consistency?

How do we build useful systems?

1. Throw our hands up in the air
a. “If you want availability, completely give up on consistency and

viceversa”
b. Or pretend that P doesn’t happen

2. Weaken the requirements slightly (change the
definitions)

a. Instead of full availability, high availability
i. E.g., 99.99999…% requests handled

b. Weaker consistency models, but stronger than no consistency
c. CAP theorem only works for strict definitions!

Weakening availability

Networks may fail, but with a complex, redundant topology
it’s far less likely that they result in failed
transactions.

● Geo-redundancy
● No single point of failure

Weakening consistency

Strict serializability (1) - equivalent to C in CAP

Every write is seen immediately in the system.

Implies a total ordering of operations, reads and writes,
based on time.

Consistency Levels

Serializable (2)

There is a total ordering of operations

● Execution corresponds to some serial order of operations
● … but not completely based on time.

Consistency Levels

Serializable (2)

The following writes happen in order: X, Y, Z

● Y happens after X, Z happens after Y

What will readers see? One of the following:

● Nothing
● X
● X, Y
● X, Y, Z

Consistency Levels

Eventual consistency (3)

If you stop writing, replicas converge

May not seem like much, but still offers a degree of
consistency

● Replicas converge within some amount of time
● Not guaranteed, but measurable

Consistency Recap

Strict Serializable

Serializable

Eventually Consistent

Important reminder - this is a 30k feet view!

● Many variants and intermediate levels.

Remainder of talk

Introduction

Distributed databases

Real distributed database systems

● Existing Databases

Conclusions

Strictly serializable systems

Apache Zookeeper, Google Chubby

● Distributed lock service, master election

● Look like a filesystem (hierarchical namespace)

● Can store small pieces of data as well (KiB, not GiB)

● Not suitable to high-throughput

Strict serializable systems

Zookeeper, Google Chubby

● Use N replicas
○ Every write goes to at least round up(N/2 + 1) replicas
○ Generally, odd number of replicas

● Consensus algorithm
○ Replicas agree to the order of all writes

● Reads:
○ For strict serializable, read from round up(N/2 + 1)
○ For serializable, read from a single replica

Strict serializable systems - partition example

5 replicas

P1: A, B, C split from
P2: D, E

Write to P1, P2?

Read from P1, P2?

Strict Serializable / Serializable systems

Google Spanner, CochroachDB, VoltDB

● Strict serializable as long as clocks synchronized
○ Tens of milliseconds of drift

● Serializable otherwise

● Wait out the drift
○ Spanner: wait on write side
○ CockroachDB: wait on read side

Strict Serializable / Serializable systems

3rd party testing was critical

● Jepsen.io found serialization bugs in both CochroachDB
and VoltDB, subsequently fixed

CockroachDB, VoltDB - SQL subset

● Including joins!
● NoSQL became NewSQL

Eventual consistency systems

E.g., Cassandra, Big Table, Aerospike

● Any replica may accept writes.

● In case of conflict, timestamp determines who wins.

● Ordering only happens on conflict resolution

Why use eventual consistency systems?

High Throughput, Low Latency

● Easily an order of magnitude better than (strict)
sequential system

High Availability of Entire system

● Not the same as CAP availability (binary property)

But … you need to be able to deal with replication delay

Many things I didn’t talk about (not an exhaustive list)

PACELC (Pass Elk) - CAP++

○ Latency as a trade-off

What is this database suitable for?

○ Size/structure of keys/data, Read/Write mix

How easy is it to manage?

○ Cassandra - easily add a replica; Zookeeper - restart whole system

How easy is it to program?

Conclusions

● Definitions and Names matter
○ Can’t solve full problem? Come up with a slightly relaxed problem

that is solvable

● Don’t trust the marketing department
○ https://jepsen.io/

● Choosing a distributed database means understanding
trade-offs

About me

● Full name is Vlad Petric (not Vladimir), and I come from
Transylvania (part of Romania). If you Google me, I’m not
the bodybuilder

● Worked at Google on Web search and BigTable teams.

● Currently work in the financial sector

● I am the author of Akro build, a C++ build system with
automated dependency tracking

Thank you!

