
Redactable Logs for CockroachDB
In v20.2 and perhaps v20.1/v19.2

Raphael 'kena' Poss - 2020-06-08

@cockroachdb

Summary

@cockroachdb

Redactable Logs for CockroachDB

Log files on-disk retain all details, unsafe data can be automatically stripped out

How: redaction markers around unsafe bits — for example:

[n1,consistencyChecker,s2,r4/1:‹/System{/tsd-tse}›] triggering stats

recomputation to resolve delta of ‹{ContainsEstimates:1438 ...}›

Then: debug zip --redact-logs — for example:

[n1,consistencyChecker,s2,r4/1:‹×›] triggering stats recomputation to resolve

delta of ‹×›

In a nutshell

@cockroachdb

Redactable Logs for CockroachDB

- Compliance:

- JPMC and others bank-like customers — simply can't share, financial regulations

- GDPR and similar forces CRL to become “data processor” to receive PII and other

confidential data from any support customers — this is costly and legal minefield

- Creates a confidentiality barrier for CockroachCloud

- Customers have often asked us for this

- Might enable more sales of our support services if customers don't feel we spy

Why?

@cockroachdb

Redactable Logs for CockroachDB

Data is safe if it is guaranteed / proven not to contain information that a customer may not

want to share with us: PII; confidential information; legally protected information; etc.

Data is unsafe otherwise.

- Visibly contains PII, confidential etc — obviously unsafe

- Visibly does not contain PII, confidential etc, but not proven not to, is also unsafe

This is a conservative approach: we consider anything unsafe until we have very good

reasons not to; everything gets redacted except for those bits which we know are safe

Key terms and concepts

@cockroachdb

How this impacts customers and CRL

@cockroachdb

What changes for whom — Users

New server option: --redactable-logs

Defaults to true (enabled) in v20.2

Defaults to false in v20.1 and v19.2 (if feature gets backported — TBD)

New client option for debug zip: --redact-logs

Might default to true in v20.2 (TBD)

Messaging: redaction occurs server-side; no sensitive data travels over the network

@cockroachdb

What changes for whom — Technical Support

See previous slide: --redactable-logs / --redact-logs

NB: cockroach debug zip --redact-logs can redact (very conservatively)

even when --redactable-logs was not enabled server-side.

However this makes logs nearly unusable — recommend --redactable-logs=true always

Company policy should transition over time to request redacted logs first

This sustains customer trust and minimizes legal exposure of CRL

@cockroachdb

What changes for whom — Cockroach Cloud

New server option: --redactable-logs

Will aim to enable always in CockroachCloud clusters

When escalating an issue from CC to Tech Support / Engineering:

- Provide redacted logs first

- Only after additional request/escalation, provide full logs

- Process: has the person who wants full logs

sufficient credentials to access CC customer's data?

@cockroachdb

What changes for whom — Documentation

We need to document the command-line options (obvs...) + recommend --redactable-logs

We need to document the logging format

- Allows users to audit the correctness of our redaction algorithms

- This builds trust and confidence

- Creates value by enabling 3rd party monitoring that is confidentiality-aware

Update our Responsible disclosure policy

Redaction failures are to be reported as security vulnerabilities

@cockroachdb

What changes for whom — Engineering

- I am receiving a redacted log from support / a test failure — now what?

- The assumption is that the remaining data is sufficient for you to do your job

- If it is not, the priority should be to enhance the logging

ahead of negotiating for unredacted logs (take urgency of situation into account)

- How do I make my logging code redactable? How do I enhance it towards this?

- See slides at end with examples

- I found a bug which causes unsafe data to be preserved in redacted logs

- Treat this as security vulnerability and talk to #security / security@

@cockroachdb

The Plan™

1. Design+impl infrastructure in CockroachDB master — done (RFC, PR)

2. Socialize the approach — you are here!

3. Enable in testing internally (June-August 2020)

○ Test logs show redacted logs first, extra work needed to see all

○ This nudges all engineers to improve logging for redactability

4. Concurrently with #3, iterate on API and log calls based on experience

5. Concurrently with #3, impl redaction for more pieces of debug zip, not just logs

6. Set up external docs for users + workflows / explanations for Technical Support

7. Feature + processes ready for v20.2. (Currently discussing feasibility of backport.)

How this will come to fruition

https://github.com/cockroachdb/cockroach/pull/48076
https://github.com/cockroachdb/cockroach/pull/48051

@cockroachdb

Questions?

- Ask me directly

- Discuss implementation on #kv / #support

@cockroachdb

Engineering: Code Updates

@cockroachdb

Technical Approach

- Log API calls do not change — mostly:

- The format string of Infof(..) calls is considered always safe

- Therefore, we lint it to mandate it be a constant

- E.g. log.Infof("my string " + myVar) is now invalid

Use log.Infof("my string %s", myVar) instead

- Each value to be logged can decide to "make itself redactable" or not

- Via SafeFormat() method (main), for leaf/simple types only SafeValue()

- There's also a global registry or pre-defined always-safe types, eg time.Duration

- log.Safe(...) still exists but is now being demoted (evt deprecated)

-

@cockroachdb

Common Case: String() to SafeFormat()
(Examples from https://github.com/cockroachdb/cockroach/pull/48051)

E.g. roachpb/metadata.go:

Nb: RangeID considered
safe, see later slide

https://github.com/cockroachdb/cockroach/pull/48051

@cockroachdb

Common Case: String() to SafeFormat()

Simple numeric values (bool, ints, floats) are always considered safe:

(Examples from https://github.com/cockroachdb/cockroach/pull/48051)

https://github.com/cockroachdb/cockroach/pull/48051

@cockroachdb

Common Case: String() to SafeFormat()

SafeFormat() recursively delegates the creation of redactable output

Recursion terminates at either unsafe data, or always-safe leaf/simple value

(Examples from https://github.com/cockroachdb/cockroach/pull/48051)

Use SafeValue with caution
— see notes at end

https://github.com/cockroachdb/cockroach/pull/48051

@cockroachdb

Store Redactable in memory, log it later

Example in gossip/gossip.go

(Examples from https://github.com/cockroachdb/cockroach/pull/48051)

https://github.com/cockroachdb/cockroach/pull/48051

@cockroachdb

Store Redactable in memory, log it later

A more advanced example: the replica "range description string"

(Examples from https://github.com/cockroachdb/cockroach/pull/48051)

https://github.com/cockroachdb/cockroach/pull/48051

@cockroachdb

Buffer a RedactableString incrementally

Before:

var buf strings.Builder

buf.WriteString("hello")

buf.WriteString("world")

fmt.Fprintf(&buf, "hello %s", "universe")

result := buf.String()

After:

var buf redact.StringBuilder

buf.SafeString("hello")

buf.UnsafeString("world")

buf.Printf("hello %s", "universe")

result := buf.RedactableString()

// NB: fmt.Fprintf(&buf) also works but

// considers everything printed as unsafe

@cockroachdb

What's in a SafePrinter?
The first arg to SafeFormat(w redact.SafePrinter, verb rune) methods

Nb: fmt.State also implements
io.Writer

Familiarity
With fmt.Formatter is advised

This also explains the
"rune" 2nd arg

@cockroachdb

What's in a SafePrinter? (cont.)

… cont. on right side

@cockroachdb

What's a RedactableString?

@cockroachdb

In summary — when is data safe?

- If it's printed via p.SafeString() / p.SafeRune() from within a SafeFormat() method

- If it's enclosed in log.Safe() in a log call or SafeFormat method (deprecated)

- If it was in a p.Printf/log.XXf format string (as a constant, e.g. a literal)

- If it's not enclosed within redaction markers in RedactableString values

- If it is a value of a registered always-safe type

- Static registry: all types implementing SafeValue()

- Dynamic registry: non-aliased Go type bool, int (incl int32 uint32 etc), float, also

time.Duration, time.Time, hlc.Timestamp

- Reported in docs/generated/redact_safe.md, extra scrutiny during reviews

@cockroachdb

What's wrong with log.Safe() and SafeValue()

Consider: log.Infof(ctx, "hello %s", log.Safe(myVar))

Critical flaw: nothing prevents the definition of myVar from being changed, far from the log

call, to start leaking unsafe information. There's no incentive/signal during reviews to care for

this. The same problem exists with SafeValue().

Therefore we restrict SafeValue() to the most simple Go types. We'll also deprecate log.Safe().

Use SafeFormat() and RedactableString instead.

@cockroachdb

In summary — when is data unsafe?

General rule: data is unsafe unless explicitly marked as safe as per previous slides

In particular:

- Go "string" type always to be considered unsafe

(who knows where a string comes from)

- String() methods always to be considered unsafe

(too much risk of auto-call of a String() from 3rd party package)

- If you personally can't prove it's safe, consider it unsafe (better be safe than sorry)

